Zero-Downtime Upgrades:
PostgreSQL and OS/glibc

at Global Scale

v GitLab

& GitLab

Alexander Sosha

Senior Database Reliability Engineer

Agenda

This talk will showcase:
e How we execute PostgreSQL and OS upgrades at GitLab, with zero downtime.
By answering these questions:

e PostgreSQL Upgrades - How do they work, and why are they hard?
e OS Upgrades - How do they work, and why are they hard?
e What did we do to minimize impact to our users?

To fit the time slot, some aspects are simplified, details and code in the linked resources!
-

Why are PostgreSQL Major Upgrades hard?

Major releases (can) change the layout of system tables

Data files can not be used by newer versions

Rewriting of system tables and metadata is necessary

Helping structures like indexes might require a rebuild

Depending on data size and complexity this can take significant time

rrrrrrrrrrrrr

Upgrade Method - pg_dumpall (default)

o LML AT

!
1|
|
R

PG16 o exy
1. 2. 3. 4.
maintenance mode physical to logical logical to physical create indexes
(DB becomes RO) (binary to SQL*) (SQL* to binary) collect statistic

N
Upgrade Method - pg_dumpall @-»@-»@

Safest method available
e Also able to upgrade
o 0OS/glibc
o Hardware architecture, e.g. x86 = RISC-V
e Some data types like jsonb get validated
Requires downtime based on data and indexes
o Hard to provide simple estimate: our ~40 TiB DB will take > 24h
o You can easily try it out and measure to get exact timing
e No quick rollback after upgrade!

If this fulfills your needs, it's the safest option! Don't look any further!
GitLab Copyright v

Upgrade Method - pg_upgrade

G

1. 2.
Maintenance mode In-place upgrading
(offline / RO with standby) binary data

rrrrrrrrrrrrr

Upgrade Method - pg_upgrade

G

1. 2.
Maintenance mode In-place upgrading
(offline / RO with standby) binary data

rrrrrrrrrrrrr

Upgrade Method - pg_upgrade

Quite simple
e Reasonable fast
o Additional operations like a reindex or tests can take longer!
Reasonable safe
e No quick rollback after upgrade!
When | joined GitLab, we used it as well
o Due to mandatory QA tests total downtime was >4h per upgrade
o Upgrades where avoided due to downtime

If this fulfills your needs, it's a safe and simple option! Don't look any further!

GitLab Copyright

Why can’t we use a boring solution for GitLab.com?

///////////////

Why can’t we use a boring solution for GitLab.com?

e GitLab.com is a globally used SaaS offering

@)
@)
@)
@)

@)

> 50 million users around the world
> 2,500 team members, all-remote and globally distributed (>65 countries)

> 1 Million SQL queries per second on PostgreSQL (US working hours)
There is not a single minute, at witch a downtime would not impact users

and team members!
Data Sources ir.gitlab.com, about.gitlab.com/company/team

e No budget for downtime
e We need to be able to roll back if the new DBMS does not perform

GitLab Copyright

http://gitlab.com
https://ir.gitlab.com/
https://about.gitlab.com/company/team

How do you define “Zero Downtime" in SaaS?

e User requests are not handled instantaneously
e When a user presses a button it takes time before the result is shown
e We can't go for “O ms" downtime :)

rrrrrrrrrrrrr

How do you define “Zero Downtime" in SaaS?

e User requests are not handled instantaneously
e When a user presses a button it takes time before the result is shown
e We can't go for “O ms" downtime :)

“Zero Downtime"” = no user impact!

rrrrrrrrrrrrr

How is GitLab measuring User Impact?

e Apdex (Application Performance Index)
o Open standard for measuring application performance
o Based on classifying user interactions ins
m ‘“satisfied”
m “tolerating”
m “frustrated”
o Requires tuned thresholds to classify samples
o Details: wikipedia.org/wiki/Apdex

SatisfiedCount + (0.5 - ToleratingCount) + (0 - FrustratedCount)
TotalSamples

pdex, =

https://en.wikipedia.org/wiki/Apdex

How do we achieve Zero Downtime?

///////////////

How do we achieve Zero Downtime?

Logical Replication

rrrrrrrrrrrrr

How are we achieving Zero Downtime?

Logical Replication
(and a lot of automation)

rrrrrrrrrrrrr

Logical Replication

e Unlike Streaming Replication, LR can replicate across different PG versions
e \We can upgrade a clone of our production database and bring it in sync

e Does it come with restrictions?
o Yesl!

o Watch my previous talk or read the extended slide deck
o How we execute PG major upgrades at GitLab, with zero downtime.
(PGConf.EU 2023) youtube.com/watch?v=008kJggkovg
o Important for this talk: Schema changes would break LR!
m No DDL allowed: CREATE, ALTER, DROP, ...

GitLab Copyright

https://www.youtube.com/watch?v=o08kJggkovg
https://www.youtube.com/watch?v=o08kJggkovg
http://youtube.com/watch?v=o08kJggkovg

Logical Replication - DDL is not replicated

e Schema changes would break logical replication!
o No DDL allowed: CREATE, ALTER, DROP

Our solution

e Disable all deployments, migration, and maintenance jobs creating DDL
o GitLab features
m Database upgrade DDL lock
m disallow_database_ddl_feature_flags, MR130554
o You need to check YOUR applications DDL usage!
m Most common software will not erratically execute DDL

GitLab Copyright

https://docs.gitlab.com/development/database/database_upgrade_ddl_lock/
https://gitlab.com/gitlab-org/gitlab/-/merge_requests/130554

Logical Replication + pg_upgrade

O

PG16

///////////////

Logical Replication + pg_upgrade

Y

Targed
N

PG16

Create and sync Target

///////////////

Logical Replication + pg_upgrade

@

Upgrade Target
(no sync during upgrade)

///////////////

Logical Replication + pg_upgrade

N

PG16

Y

Targed
N

PG17

Resync via LR

///////////////

Logical Replication + pg_upgrade

(Sourss
N

PG16

J

\
.' 53 o arge
@ PG17

Application Switchover

///////////////

Logical Replication + pg_upgrade

O

PG17

///////////////

PostgreSQL Upgrade - State 2023

O O {o)e

PG16 PG16 PG16
v ' v
\4
PG16 PG17 PG17 PG17
1.Sync Target 2. Upgrade Target 3. Resync 4. Switchover

/////////////// v

What is actual the User Impact?

///////////////

How well did we do? - Web Apdex

e Web Service Apdex - top 1% (0.99 - 1.00 nit-picking view)
e Degradation SLO: 98.8%, red line would be below this graph :D

How well did we do? - Web Apdex

e Web Service Apdex - top 1% (0.99 - 1.00 nit-picking view)
e Degradation SLO: 98.8%, red line would be below this graph :D

Can we improve further?

1. Switchover is a Point of no Return
o If performance degrades or any problem occurs, we can't go back!
o Significant business risk!

2. This approach only upgrades PostgreSQL
o OS or library upgrades are not handled

rrrrrrrrrrrrr

(Re)move Point of no Return - Reverse Replication

e After the Switchover we reverse the replication
e Enables swift rollback without data loss

rrrrrrrrrrrrr

(Re)move Point of no Return - Reverse Replication

PG17

Reverse Replication

rrrrrrrrrrrrr

(Re)move Point of no Return - Reverse Replication

PG17

Operation and Monitoring

rrrrrrrrrrrrr

(Re)move Point of no Return - Reverse Replication

PG17

Late Rollback
(optional)

///////////////

Why are OS Upgrades hard?

e When upgrading the OS, you will get a new version of glibc (GNU C Library)
o This library defines the system-wide collation
e Collation: Set of rules that describe how strings are compared and ordered
o “A" < “B" < “C”
o “1" < "2" < “3”
o “18" < “2" OR “10" > “2"
o “\" “/" OR /" > "\"
e Indexes
o Need to be used with the collation they were created with!
o If not, data corruption can occur!

A

GitLab Copyright

OS Upgrade - Simple Solution

e Some data types don't use collations and are unproblematic, e.g. INTEGER
e Rebuild all indexes (on strings) with the current collation
o If this works for your use-case, great!
o If you use the pg_dumpall upgrade method you get it automatically
o For GitLab.com this would take multiple days, longer than our upgrade window

GitLab Copyright v

http://gitlab.com

OS Upgrade - Optimized Approach

e Before we start the upgrade we automatically create a list of all indexes, where
the new collation can lead to corruption. (Script based on amcheck)
o No need to recreate non-problematic types like INTEGER
o No need to recreate indexes only containing non-problematic data
m Example: md5 hashes (strings)
e We recreate all listed indexes on a test system, to measure the execution time
o If it takes longer than acceptable, we can optimize beforehand
m Replace indexes
e Different type
e Multiple partial indexes
m |f non-disruptive: lazily recreate after upgrade

GitLab Copyright

https://www.postgresql.org/docs/current/amcheck.html

OS Upgrade - Optimized Approach

©)
e Saturday: Upgrade
e Sunday: Switchover PG16 PG16

e After the upgrade step we have between 12h to 24h |
before the Switchover to: * v
o recreate all problematic indexes o,
o run amcheck to verify no data corruption <5>

o run additional tests if necessary

PG17 PG17

Recreate Indexes Switchover
Run amcheck

GitLab Copyright v

PostgreSQL and OS Upgrade

e 2025 we upgraded most of our database systems
o PG16 = PG17 goe
o Ubuntu 20.04 = 22.04 o o

e Let's walk through one of the last upgrades
PG16

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade

O

PG16

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade @

DDL Status

O

Application stack |/ Sl \ 9 + Thodes in 3 AZ

Ubuntu 20.04 + PG16

PostgreSQL and OS Upgrade - Preparation

Y

GestD
N

PG16

Create Test clone

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade - Preparation

N

PG16
|

\/
(Test >

&DH—

PG17

Test upgrade
Get execution times
fffffffffffffff Get list of corrupted indexes

PostgreSQL and OS Upgrade - Preparation

N

Pi16
(Target)

Remove Test Cluster
Create Target Cluster

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade - Saturday

rrrrrrrrrrrrr

Y

Targed
N

PG16

Switch to logical replication
(DDL would break it)

PostgreSQL and OS Upgrade - Saturday

N

PG16

Y

(Target)
&)—

PG17

Upgrade Target
(no sync during upgrade)

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade - Saturday

7o o (Source)

Y

Targed
N

PG17

Resync

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade - Saturday

N

PG16

Y

(Target)
&)—

PG17

Reindex
Analyze (collect statistics)
fffffffffffff Corruption Check

PostgreSQL and OS Upgrade - Sunday

(Sourss
N

PG16

Y
Jarget)

Switchover read-only queries partially
Monitor performance

\

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade - Sunday

(Sourss
N

PG16

o
2

Switchover all read-only queries
Monitor performance

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade - Sunday

(Sourss
N

PG16

o
-

Run full QA test suite
QA + live traffic
fffffffffffffff Monitor performance

PostgreSQL and OS Upgrade - Sunday

(Sourss
N

PG16

J

\
.' 53 o arge
@ PG17

Switchover all load

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade - Sunday

’< PG16 }

<5>
PG17

Reverse Replication

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade - Monday

PG16

<5>
PG17

Monitoring during peak hours
(Fast Rollback possible)

rrrrrrrrrrrrr

PostgreSQL and OS Upgrade - Tuesday
a

v

_pcte J
)

I
@
PG17

Point of no return
,,,,,,,,,,,,, Remove PG16 cluster

PostgreSQL and OS Upgrade - Tuesday

O

PG17

Normal operation
Start planning next upgrade ;)

rrrrrrrrrrrrr

Re

GitLab Copyright

sources

GitLab: about.gitlab.com
Our RDBMS: about.gitlab.com/handbook/engineering/infrastructure/database
Ansible Playbooks: gitlab.com/gitlab-com/gl-infra/db-migration
CR Template: ../db-migration/.gitlab/issue_templates/pg_upgrade.md
Extended Slide Deck with addition annotations:

o FOSDEM26 - fosdem.org/2026

o FOSDEM PGDay 2026 - 2026.fosdempgday.org
Previous Talk

o How we execute PG major upgrades at GitLab, with zero downtime.
(PGConf.EU 2023) voutube.com/watch?v=008kJggkovqg
Alexander Sosha

o sosha.de

https://about.gitlab.com/
https://about.gitlab.com/handbook/engineering/infrastructure/database/
https://gitlab.com/gitlab-com/gl-infra/db-migration
https://gitlab.com/gitlab-com/gl-infra/db-migration/-/blob/master/.gitlab/issue_templates/pg_upgrade.md
https://fosdem.org/2026/schedule/event/ZF8ZLX-zero-downtime-postgresql-upgrades/
https://fosdem.org/2026/
https://www.postgresql.eu/events/fosdem2026/schedule/session/7370-zero-downtime-upgrades-postgresql-and-osglibc-at-global-scale/
https://www.youtube.com/watch?v=o08kJggkovg
https://www.youtube.com/watch?v=o08kJggkovg
https://sosna.de

Questions?

During the event

GitLab Stand at FOSDEM
Later

Now!

sosha.de

rrrrrrrrrrrrr

https://sosna.de

