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This talk will showcase:

● How we execute PostgreSQL and OS upgrades at GitLab, with zero downtime.

By answering these questions:

● PostgreSQL Upgrades - How do they work, and why are they hard?
● OS Upgrades - How do they work, and why are they hard?
● What did we do to minimize impact to our users?

To fit the time slot, some aspects are simplified, details and code in the linked resources!

Agenda
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Why are PostgreSQL Major Upgrades hard?

● Major releases (can) change the layout of system tables
● Data files can not be used by newer versions
● Rewriting of system tables and metadata is necessary
● Helping structures like indexes might require a rebuild
● Depending on data size and complexity this can take significant time
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Upgrade Method - pg_dumpall (default)

2.
physical to logical
(binary   to  SQL 

3.
logical  to physical
SQL   to binary) 

4.
create indexes
collect statistic

1.
maintenance mode
 DB becomes RO
User impact starts

SQL

PG16 PG17



GitLab Copyright

Upgrade Method - pg_dumpall

● Safest method available
● Also able to upgrade

○ OS/glibc
○ Hardware architecture, e.g. x86  RISCV

● Some data types like jsonb get validated
● Requires downtime based on data and indexes

○ Hard to provide simple estimate: our 40 TiB DB will take > 24h
○ You can easily try it out and measure to get exact timing

● No quick rollback after upgrade!

If this fulfills your needs, itʼs the safest option! Donʼt look any further!

x86
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Upgrade Method - pg_upgrade

2.
In-place upgrading 

binary data

1.
Maintenance mode

(offline / RO with standby)
User impact starts

PG16
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Upgrade Method - pg_upgrade

PG17
PG16

2.
In-place upgrading 

binary data

1.
Maintenance mode

(offline / RO with standby)
User impact starts
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Upgrade Method - pg_upgrade

● Quite simple
● Reasonable fast

○ Additional operations like a reindex or tests can take longer!
● Reasonable safe
● No  quick rollback after upgrade!
● When I joined GitLab, we used it as well

○ Due to mandatory QA tests total downtime was 4h per upgrade
○ Upgrades where avoided due to downtime

If this fulfills your needs, itʼs a safe and simple option! Donʼt look any further!

NEW
OLD
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Why canʼt we use a boring solution for GitLab.com?
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Why canʼt we use a boring solution for GitLab.com?

● GitLab.com is a globally used SaaS offering
○ > 50 million users around the world
○ > 2,500 team members, all-remote and globally distributed 65 countries)
○ > 1 Million SQL queries per second on  PostgreSQL US working hours)
○ There is not a single minute, at witch a downtime would not impact users 

and team members!
○ Data Sources ir.gitlab.com, about.gitlab.com/company/team

● No budget for downtime
● We need to be able to roll back if the new DBMS does not perform

http://gitlab.com
https://ir.gitlab.com/
https://about.gitlab.com/company/team
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How do you define “Zero Downtimeˮ in SaaS?

● User requests are not handled instantaneously
● When a user presses a button it takes time before the result is shown
● We canʼt go for “0 msˮ downtime :)
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How do you define “Zero Downtimeˮ in SaaS?

● User requests are not handled instantaneously
● When a user presses a button it takes time before the result is shown
● We canʼt go for “0 msˮ downtime :)

“Zero Downtimeˮ ⇒ no user impact!
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How is GitLab measuring User Impact?

● Apdex Application Performance Index)
○ Open standard for measuring application performance
○ Based on classifying user interactions ins

■ “satisfiedˮ
■ “toleratingˮ
■ “frustratedˮ

○ Requires tuned thresholds to classify samples
○ Details: wikipedia.org/wiki/Apdex

https://en.wikipedia.org/wiki/Apdex
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How do we achieve Zero Downtime?
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How do we achieve Zero Downtime?

Logical Replication
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How are we achieving Zero Downtime?

Logical Replication
(and a lot of automation)
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Logical Replication

● Unlike Streaming Replication, LR can replicate across different PG versions
● We can upgrade a clone of our production database and bring it in sync

● Does it come with restrictions?
○ Yes!
○ Watch my previous talk or read the extended slide deck
○ How we execute PG major upgrades at GitLab, with zero downtime. 

PGConf.EU 2023 youtube.com/watch?v=o08kJggkovg
○ Important for this talk: Schema changes would break LR!

■ No DDL allowed: CREATE, ALTER, DROP, …

https://www.youtube.com/watch?v=o08kJggkovg
https://www.youtube.com/watch?v=o08kJggkovg
http://youtube.com/watch?v=o08kJggkovg
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Logical Replication - DDL is not replicated

● Schema changes would break logical replication!
○ No DDL allowed: CREATE, ALTER, DROP

Our solution

● Disable all deployments, migration, and maintenance jobs creating DDL
○ GitLab features

■ Database upgrade DDL lock
■ disallow_database_ddl_feature_flags, MR130554

○ You need to check YOUR applications DDL usage!
■ Most common software will not erratically execute DDL

https://docs.gitlab.com/development/database/database_upgrade_ddl_lock/
https://gitlab.com/gitlab-org/gitlab/-/merge_requests/130554
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Logical Replication + pg_upgrade

PG16
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Logical Replication + pg_upgrade

Create and sync Target

Source

PG16

PG16

Target
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Logical Replication + pg_upgrade

Upgrade Target
(no sync during upgrade)

Source

Target

PG16

PG17
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Logical Replication + pg_upgrade

Resync via LR

Source

Target

PG16

PG17
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Logical Replication + pg_upgrade

Application Switchover

Source

Target

PG16

PG17
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Logical Replication + pg_upgrade

PG17
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PostgreSQL Upgrade - State 2023

1.Sync Target 2. Upgrade Target 3. Resync 4. Switchover

PG16

PG16

PG16

PG17

PG16

PG17 PG17
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What is actual the User Impact?
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How well did we do?  Web Apdex

● Web Service Apdex -  top 1% 0.99  1.00 nit-picking view) 
● Degradation SLO 98.8%, red line would be below this graph D
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How well did we do?  Web Apdex 🎉

● Web Service Apdex -  top 1% 0.99  1.00 nit-picking view) 
● Degradation SLO 98.8%, red line would be below this graph D
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Can we improve further?

1. Switchover is a Point of no Return
○ If performance degrades or any problem occurs, we canʼt go back!
○ Significant business risk!

2. This approach only upgrades PostgreSQL
○ OS or library upgrades are not handled
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Remove Point of no Return - Reverse Replication

● After the Switchover we reverse the replication 
● Enables swift rollback without data loss 
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Remove Point of no Return - Reverse Replication

Reverse Replication

PG16

PG17
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Remove Point of no Return - Reverse Replication

Operation and Monitoring

PG16

PG17
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Remove Point of no Return - Reverse Replication

Late Rollback
(optional)

PG16

PG17
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Why are OS Upgrades hard? 

● When upgrading the OS, you will get a new version of glibc GNU C Library)
○ This library defines the system-wide collation

● Collation: Set of rules that describe how strings are compared and ordered
○ “A”  <  “B”  <  “C” 
○ “1”  <  “2”  <  “3”
○ “10” <  “2” OR  “10” > “2”
○ “\”  <  “/” OR  “/”  > “\”

● Indexes
○ Need to be used with the collation they were created with!
○ If not, data corruption can occur!
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OS Upgrade - Simple Solution 

● Some data types donʼt use collations and are unproblematic, e.g. INTEGER
● Rebuild all indexes (on strings) with the current collation

○ If this works for your use-case, great!
○ If you use the pg_dumpall upgrade method you get it automatically
○ For GitLab.com this would take multiple days, longer than our upgrade window

http://gitlab.com
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OS Upgrade - Optimized Approach

● Before we start the upgrade we automatically create a list of all indexes, where 
the new collation can lead to corruption. Script based on amcheck)
○ No need to recreate non-problematic types like INTEGER
○ No need to recreate indexes only containing non-problematic data

■ Example: md5 hashes (strings)
● We recreate all listed indexes on a test system, to measure the execution time

○ If it takes longer than acceptable, we can optimize beforehand
■ Replace indexes

● Different type
● Multiple partial indexes

■ If non-disruptive: lazily recreate after upgrade

https://www.postgresql.org/docs/current/amcheck.html
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OS Upgrade - Optimized Approach

● Saturday: Upgrade
● Sunday: Switchover
● After the upgrade step we have between 12h to 24h 

before the Switchover to:
○ recreate all problematic indexes
○ run amcheck to verify no data corruption
○ run additional tests if necessary

Recreate Indexes
Run amcheck

Switchover

PG16

PG17 PG17

PG16



GitLab Copyright

PostgreSQL and OS Upgrade

PG16

● 2025 we upgraded most of our database systems
○ PG16  PG17
○ Ubuntu 20.04  22.04

● Letʼs walk through one of the last upgrades
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PostgreSQL and OS Upgrade

PG16

DDL
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PostgreSQL and OS Upgrade

PG16Application stack 9  1 nodes in 3 AZ
Ubuntu 20.04  PG16

DDL

DDL Status
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PostgreSQL and OS Upgrade - Preparation

Create Test clone

Source

PG16

PG16

Test

DDL

3 nodes in 3 AZ
Ubuntu 22.04  PG17
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PostgreSQL and OS Upgrade - Preparation

Test upgrade
Get execution times

Get list of corrupted indexes

Source

PG16

PG17

Test

DDL
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PostgreSQL and OS Upgrade - Preparation

Remove Test Cluster
Create Target Cluster

Source

PG16

PG16

Target

PG17

Test

DDL

9  1 nodes in 3 AZ
Ubuntu 22.04  PG17
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PostgreSQL and OS Upgrade - Saturday

Switch to logical replication
DDL would break it)

Source

Target

PG16

PG16

No
DDL
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PostgreSQL and OS Upgrade - Saturday

Upgrade Target
     (no sync during upgrade)

Source

Target

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Saturday

Resync

Source

Target

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Saturday

Reindex
Analyze (collect statistics)

Corruption Check

Source

Target

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Sunday

Switchover read-only queries partially
Monitor performance

Source

Target

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Sunday

Switchover all read-only queries
Monitor performance

Source

Target

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Sunday

Run full QA test suite
QA + live traffic

Monitor performance

Source

Target

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Sunday

 Switchover all load

Source

Target

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Sunday

Reverse Replication

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Monday

Monitoring during peak hours
Fast Rollback possible)

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Tuesday

Point of no return
Remove PG16 cluster

PG16

PG17

No
DDL
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PostgreSQL and OS Upgrade - Tuesday

PG17

Normal operation
Start planning next upgrade ;)

DDL
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Resources
● GitLab: about.gitlab.com
● Our RDBMS about.gitlab.com/handbook/engineering/infrastructure/database
● Ansible Playbooks: gitlab.com/gitlab-com/gl-infra/db-migration
● CR Template: ../db-migration/.gitlab/issue_templates/pg_upgrade.md
● Extended Slide Deck with addition annotations:

○ FOSDEM26 - fosdem.org/2026
○ FOSDEM PGDay 2026  2026.fosdempgday.org

● Previous Talk
○ How we execute PG major upgrades at GitLab, with zero downtime. 

PGConf.EU 2023) youtube.com/watch?v=o08kJggkovg 
● Alexander Sosna

○ sosna.de

https://about.gitlab.com/
https://about.gitlab.com/handbook/engineering/infrastructure/database/
https://gitlab.com/gitlab-com/gl-infra/db-migration
https://gitlab.com/gitlab-com/gl-infra/db-migration/-/blob/master/.gitlab/issue_templates/pg_upgrade.md
https://fosdem.org/2026/schedule/event/ZF8ZLX-zero-downtime-postgresql-upgrades/
https://fosdem.org/2026/
https://www.postgresql.eu/events/fosdem2026/schedule/session/7370-zero-downtime-upgrades-postgresql-and-osglibc-at-global-scale/
https://www.youtube.com/watch?v=o08kJggkovg
https://www.youtube.com/watch?v=o08kJggkovg
https://sosna.de
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Questions?

● During the event
● GitLab Stand at FOSDEM
● Later
● Now!

                     
sosna.de

https://sosna.de

