
Zero-Downtime Upgrades:

PostgreSQL and OS/glibc

at Global Scale

GitLab Copyright

Alexander Sosna
Senior Database Reliability Engineer

GitLab Copyright

This talk will showcase:

● How we execute PostgreSQL and OS upgrades at GitLab, with zero downtime.

By answering these questions:

● PostgreSQL Upgrades - How do they work, and why are they hard?
● OS Upgrades - How do they work, and why are they hard?
● What did we do to minimize impact to our users?

To fit the time slot, some aspects are simplified, details and code in the linked resources!

Agenda

GitLab Copyright

Why are PostgreSQL Major Upgrades hard?

● Major releases (can) change the layout of system tables
● Data files can not be used by newer versions
● Rewriting of system tables and metadata is necessary
● Helping structures like indexes might require a rebuild
● Depending on data size and complexity this can take significant time

GitLab Copyright

Upgrade Method - pg_dumpall (default)

2.
physical to logical
(binary to SQL

3.
logical to physical
SQL to binary)

4.
create indexes
collect statistic

1.
maintenance mode
 DB becomes RO
User impact starts

SQL

PG16 PG17

GitLab Copyright

Upgrade Method - pg_dumpall

● Safest method available
● Also able to upgrade

○ OS/glibc
○ Hardware architecture, e.g. x86  RISCV

● Some data types like jsonb get validated
● Requires downtime based on data and indexes

○ Hard to provide simple estimate: our 40 TiB DB will take > 24h
○ You can easily try it out and measure to get exact timing

● No quick rollback after upgrade!

If this fulfills your needs, itʼs the safest option! Donʼt look any further!

x86

GitLab Copyright

Upgrade Method - pg_upgrade

2.
In-place upgrading

binary data

1.
Maintenance mode

(offline / RO with standby)
User impact starts

PG16

GitLab Copyright

Upgrade Method - pg_upgrade

PG17
PG16

2.
In-place upgrading

binary data

1.
Maintenance mode

(offline / RO with standby)
User impact starts

GitLab Copyright

Upgrade Method - pg_upgrade

● Quite simple
● Reasonable fast

○ Additional operations like a reindex or tests can take longer!
● Reasonable safe
● No quick rollback after upgrade!
● When I joined GitLab, we used it as well

○ Due to mandatory QA tests total downtime was 4h per upgrade
○ Upgrades where avoided due to downtime

If this fulfills your needs, itʼs a safe and simple option! Donʼt look any further!

NEW
OLD

GitLab Copyright

Why canʼt we use a boring solution for GitLab.com?

GitLab Copyright

Why canʼt we use a boring solution for GitLab.com?

● GitLab.com is a globally used SaaS offering
○ > 50 million users around the world
○ > 2,500 team members, all-remote and globally distributed 65 countries)
○ > 1 Million SQL queries per second on PostgreSQL US working hours)
○ There is not a single minute, at witch a downtime would not impact users

and team members!
○ Data Sources ir.gitlab.com, about.gitlab.com/company/team

● No budget for downtime
● We need to be able to roll back if the new DBMS does not perform

http://gitlab.com
https://ir.gitlab.com/
https://about.gitlab.com/company/team

GitLab Copyright

How do you define “Zero Downtimeˮ in SaaS?

● User requests are not handled instantaneously
● When a user presses a button it takes time before the result is shown
● We canʼt go for “0 msˮ downtime :)

GitLab Copyright

How do you define “Zero Downtimeˮ in SaaS?

● User requests are not handled instantaneously
● When a user presses a button it takes time before the result is shown
● We canʼt go for “0 msˮ downtime :)

“Zero Downtimeˮ ⇒ no user impact!

GitLab Copyright

How is GitLab measuring User Impact?

● Apdex Application Performance Index)
○ Open standard for measuring application performance
○ Based on classifying user interactions ins

■ “satisfiedˮ
■ “toleratingˮ
■ “frustratedˮ

○ Requires tuned thresholds to classify samples
○ Details: wikipedia.org/wiki/Apdex

https://en.wikipedia.org/wiki/Apdex

GitLab Copyright

How do we achieve Zero Downtime?

GitLab Copyright

How do we achieve Zero Downtime?

Logical Replication

GitLab Copyright

How are we achieving Zero Downtime?

Logical Replication
(and a lot of automation)

GitLab Copyright

Logical Replication

● Unlike Streaming Replication, LR can replicate across different PG versions
● We can upgrade a clone of our production database and bring it in sync

● Does it come with restrictions?
○ Yes!
○ Watch my previous talk or read the extended slide deck
○ How we execute PG major upgrades at GitLab, with zero downtime.

PGConf.EU 2023 youtube.com/watch?v=o08kJggkovg
○ Important for this talk: Schema changes would break LR!

■ No DDL allowed: CREATE, ALTER, DROP, …

https://www.youtube.com/watch?v=o08kJggkovg
https://www.youtube.com/watch?v=o08kJggkovg
http://youtube.com/watch?v=o08kJggkovg

GitLab Copyright

Logical Replication - DDL is not replicated

● Schema changes would break logical replication!
○ No DDL allowed: CREATE, ALTER, DROP

Our solution

● Disable all deployments, migration, and maintenance jobs creating DDL
○ GitLab features

■ Database upgrade DDL lock
■ disallow_database_ddl_feature_flags, MR130554

○ You need to check YOUR applications DDL usage!
■ Most common software will not erratically execute DDL

https://docs.gitlab.com/development/database/database_upgrade_ddl_lock/
https://gitlab.com/gitlab-org/gitlab/-/merge_requests/130554

GitLab Copyright

Logical Replication + pg_upgrade

PG16

GitLab Copyright

Logical Replication + pg_upgrade

Create and sync Target

Source

PG16

PG16

Target

GitLab Copyright

Logical Replication + pg_upgrade

Upgrade Target
(no sync during upgrade)

Source

Target

PG16

PG17

GitLab Copyright

Logical Replication + pg_upgrade

Resync via LR

Source

Target

PG16

PG17

GitLab Copyright

Logical Replication + pg_upgrade

Application Switchover

Source

Target

PG16

PG17

GitLab Copyright

Logical Replication + pg_upgrade

PG17

GitLab Copyright

PostgreSQL Upgrade - State 2023

1.Sync Target 2. Upgrade Target 3. Resync 4. Switchover

PG16

PG16

PG16

PG17

PG16

PG17 PG17

GitLab Copyright

What is actual the User Impact?

GitLab Copyright

How well did we do?  Web Apdex

● Web Service Apdex - top 1% 0.99  1.00 nit-picking view)
● Degradation SLO 98.8%, red line would be below this graph D

GitLab Copyright

How well did we do?  Web Apdex 🎉

● Web Service Apdex - top 1% 0.99  1.00 nit-picking view)
● Degradation SLO 98.8%, red line would be below this graph D

GitLab Copyright

Can we improve further?

1. Switchover is a Point of no Return
○ If performance degrades or any problem occurs, we canʼt go back!
○ Significant business risk!

2. This approach only upgrades PostgreSQL
○ OS or library upgrades are not handled

GitLab Copyright

Remove Point of no Return - Reverse Replication

● After the Switchover we reverse the replication
● Enables swift rollback without data loss

GitLab Copyright

Remove Point of no Return - Reverse Replication

Reverse Replication

PG16

PG17

GitLab Copyright

Remove Point of no Return - Reverse Replication

Operation and Monitoring

PG16

PG17

GitLab Copyright

Remove Point of no Return - Reverse Replication

Late Rollback
(optional)

PG16

PG17

GitLab Copyright

Why are OS Upgrades hard?

● When upgrading the OS, you will get a new version of glibc GNU C Library)
○ This library defines the system-wide collation

● Collation: Set of rules that describe how strings are compared and ordered
○ “A” < “B” < “C”
○ “1” < “2” < “3”
○ “10” < “2” OR “10” > “2”
○ “\” < “/” OR “/” > “\”

● Indexes
○ Need to be used with the collation they were created with!
○ If not, data corruption can occur!

GitLab Copyright

OS Upgrade - Simple Solution

● Some data types donʼt use collations and are unproblematic, e.g. INTEGER
● Rebuild all indexes (on strings) with the current collation

○ If this works for your use-case, great!
○ If you use the pg_dumpall upgrade method you get it automatically
○ For GitLab.com this would take multiple days, longer than our upgrade window

http://gitlab.com

GitLab Copyright

OS Upgrade - Optimized Approach

● Before we start the upgrade we automatically create a list of all indexes, where
the new collation can lead to corruption. Script based on amcheck)
○ No need to recreate non-problematic types like INTEGER
○ No need to recreate indexes only containing non-problematic data

■ Example: md5 hashes (strings)
● We recreate all listed indexes on a test system, to measure the execution time

○ If it takes longer than acceptable, we can optimize beforehand
■ Replace indexes

● Different type
● Multiple partial indexes

■ If non-disruptive: lazily recreate after upgrade

https://www.postgresql.org/docs/current/amcheck.html

GitLab Copyright

OS Upgrade - Optimized Approach

● Saturday: Upgrade
● Sunday: Switchover
● After the upgrade step we have between 12h to 24h

before the Switchover to:
○ recreate all problematic indexes
○ run amcheck to verify no data corruption
○ run additional tests if necessary

Recreate Indexes
Run amcheck

Switchover

PG16

PG17 PG17

PG16

GitLab Copyright

PostgreSQL and OS Upgrade

PG16

● 2025 we upgraded most of our database systems
○ PG16  PG17
○ Ubuntu 20.04  22.04

● Letʼs walk through one of the last upgrades

GitLab Copyright

PostgreSQL and OS Upgrade

PG16

DDL

GitLab Copyright

PostgreSQL and OS Upgrade

PG16Application stack 9  1 nodes in 3 AZ
Ubuntu 20.04  PG16

DDL

DDL Status

GitLab Copyright

PostgreSQL and OS Upgrade - Preparation

Create Test clone

Source

PG16

PG16

Test

DDL

3 nodes in 3 AZ
Ubuntu 22.04  PG17

GitLab Copyright

PostgreSQL and OS Upgrade - Preparation

Test upgrade
Get execution times

Get list of corrupted indexes

Source

PG16

PG17

Test

DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Preparation

Remove Test Cluster
Create Target Cluster

Source

PG16

PG16

Target

PG17

Test

DDL

9  1 nodes in 3 AZ
Ubuntu 22.04  PG17

GitLab Copyright

PostgreSQL and OS Upgrade - Saturday

Switch to logical replication
DDL would break it)

Source

Target

PG16

PG16

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Saturday

Upgrade Target
 (no sync during upgrade)

Source

Target

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Saturday

Resync

Source

Target

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Saturday

Reindex
Analyze (collect statistics)

Corruption Check

Source

Target

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Sunday

Switchover read-only queries partially
Monitor performance

Source

Target

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Sunday

Switchover all read-only queries
Monitor performance

Source

Target

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Sunday

Run full QA test suite
QA + live traffic

Monitor performance

Source

Target

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Sunday

 Switchover all load

Source

Target

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Sunday

Reverse Replication

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Monday

Monitoring during peak hours
Fast Rollback possible)

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Tuesday

Point of no return
Remove PG16 cluster

PG16

PG17

No
DDL

GitLab Copyright

PostgreSQL and OS Upgrade - Tuesday

PG17

Normal operation
Start planning next upgrade ;)

DDL

GitLab Copyright

Resources
● GitLab: about.gitlab.com
● Our RDBMS about.gitlab.com/handbook/engineering/infrastructure/database
● Ansible Playbooks: gitlab.com/gitlab-com/gl-infra/db-migration
● CR Template: ../db-migration/.gitlab/issue_templates/pg_upgrade.md
● Extended Slide Deck with addition annotations:

○ FOSDEM26 - fosdem.org/2026
○ FOSDEM PGDay 2026  2026.fosdempgday.org

● Previous Talk
○ How we execute PG major upgrades at GitLab, with zero downtime.

PGConf.EU 2023) youtube.com/watch?v=o08kJggkovg
● Alexander Sosna

○ sosna.de

https://about.gitlab.com/
https://about.gitlab.com/handbook/engineering/infrastructure/database/
https://gitlab.com/gitlab-com/gl-infra/db-migration
https://gitlab.com/gitlab-com/gl-infra/db-migration/-/blob/master/.gitlab/issue_templates/pg_upgrade.md
https://fosdem.org/2026/schedule/event/ZF8ZLX-zero-downtime-postgresql-upgrades/
https://fosdem.org/2026/
https://www.postgresql.eu/events/fosdem2026/schedule/session/7370-zero-downtime-upgrades-postgresql-and-osglibc-at-global-scale/
https://www.youtube.com/watch?v=o08kJggkovg
https://www.youtube.com/watch?v=o08kJggkovg
https://sosna.de

GitLab Copyright

Questions?

● During the event
● GitLab Stand at FOSDEM
● Later
● Now!

sosna.de

https://sosna.de

